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Abstract: Covariance estimation for high dimensional vectors is a classically difficult problem in statistical analysis and machine learning. In this paper, 
we propose a maximum likelihood (ML) approach to covariance estimation, which employs a novel sparsity constraint. More specifically, the covariance 
is constrained to havean Eigen decomposition which can be represented as a sparse matrix transforms (SMT). The SMT is formed by a product of 
pairwise coordinate rotations knownas Givens rotations. Using this framework, the covariance can be efficiently estimated using greedy minimization of 
the log likelihood function, and the number of Givens rotations can be efficiently computed using a cross-validation procedure. The resulting estimator is 
positive definite and well-conditioned even whenthe sample size is limited. Experiments on standard hyper-spectral data sets show that the SMT 
covariance estimate is consistently more accurate than both traditional shrinkage estimates and recently proposed graphical lasso estimates for a variety 
of different classes and sample sizes. 
Keywords —Covariance estimation, Eigen-image analysis, hyper spectral data, maximum likelihood estimation, sparse matrix transform, Compressed 
sensing, Linear Mixing Model 

---------------- ♦ ------------------ 
 
 

 

1. INTRODUCTION 

As the capacity to measure and collect data increases, high 
dimensional signals and systems have become much more 
prevalent. Medical imaging, remote sensing, internet 
communications, and financial data analysis are just a few 
examples of areas in which the dimensionality of signals is 
growing explosively, and leading to an unprecedented 
quantity of information and potential knowledge. 
However, this growth also presents new challenges in the 
modeling and analysis of high dimensional signals (or 
data). In practice, the dimensionality of signals (p) often 
grows much faster than the number of available 
observations (n). The resulting “smalln, largep ” scenario 
[1] tends to break the basic assumptions of classical 
statistics and can cause conventional estimators to behave 
poorly. In fact, Donoho makes the very reasonable claimp>n 
that is in fact the more generic case in learning and 
recognition problems [2]; so, this “curse of dimensionality” 
[3], [4] represents a very fundamental challenge for the 
future. 
 
A closely related problem to the curse of dimensionality is 
the super-linear growth in computation that can occur with 

classical estimators as p grows large. For example, classical 
methods such as singular value decomposition (SVD) and 
eigen-analysis depend on the use of dense p x p 
transformations that can quickly become intractable to 
apply (or estimate) as the dimension grows. Therefore, the 
modeling and analysis of high dimensional signals pose a 
fundamental challenge not only from the perspective of 
inference, but also from the perspective of computation. A 
fundamental step in the analysis of high dimensional 
signals is the estimation of the signal’s covariance. In fact, 
an accurate estimate of signal covariance is often a key step 
in detection, classification, and modeling of high 
dimensional signals, such as images [5], [6]. However, 
covariance estimation for high dimensional signals is a 
classically difficult problem because the number of 
coefficients in the covariance grows as the dimension 
squared [7], [8]. In a typical application, one may measure 
versions of n a dimensional vector; so if n<p, then the 
sample covariance matrix will be singular with p-n eigen 
values equal to zero. 
 
Over the years, a variety of techniques have been proposed 
for computing a nonsingular estimate of the covariance. For 
example, shrinkage and regularized covariance estimators 
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are examples of such techniques. Shrinkage estimators are a 
widely used class of estimators which regularize the 
covariance matrix by shrinking it toward some positive 
definite target structures, such as the identity matrix or the 
diagonal of the sample covariance [9]–[13]. In this paper, 
we propose a new approach to covariance estimation, 
which is based on constrained maximum likelihood (ML) 
estimation of the covariance from sample vectors [14]. In 
particular, the covariance is constrained to be formed by an 
eigen-transformation that can be represented by a sparse 
matrix transform (SMT) [15]; and we define the SMT to be 
an orthonormal transformation formed by a product of 
pairwise coordinate rotations known as Givens rotations 
[16]. Using this framework, the covariance can be efficiently 
estimated using greedy maximization of the log likelihood 
function, and the number of Givens rotations can be 
efficiently computed using a cross-validation procedure. 
The estimator obtained using this method is generally 
positive definite and well-conditioned even when the 
sample size is limited. 
 
Due to its flexible structure and data-dependent design, the 
SMT can be used to model behaviors of various kinds of 
natural signals. We will show that the SMT can be viewed 
as a generalization of both the classical fast Fourier 
transform (FFT) [17] and the orthonormal wavelet 
transforms. Since these frequency transforms are commonly 
used to de-correlate and therefore model stationary random 
processes, the SMT inherits this valuable property.We will 
also demonstrate that autoregressive (AR) and moving 
average (MA) random processes can be accurately modeled 
by a low-order SMT. However, the SMT is more expressive 
than conventional frequency transforms because it can 
accurately model high dimensional natural signals that are 
not stationary, such as hyper-spectral data measurements. 
In addition, it is shown that the SMT covariance estimate is 
invariant to permutations of the data coordinates; a 
property that is not shared by models based on the FFT or 
wavelet transforms. Nonetheless, the SMT model does 
impose a substantial sparsity constraint through a 
restriction in the number of Givens rotations. When this 
sparsity constraint holds for real data, then theSMT model 
can substantially improve the accuracy of 
covarianceestimates; but conversely if the eigen-space of 
the random process has no structure, then the SMT model 
provides no advantage [18]. 

 
In order to validate our model, we perform experiments 
using simulated data, standard hyper-spectral image data, 
and face image data sets. We compare against both 
traditional shrinkage estimates and recently proposed 
graphical lasso estimates. Our experiments show that, for 
these examples, the SMT-based covariance estimates are 
consistently more accurate for a variety of different classes 
and sample sizes. Moreover, the method seems to work 
particularly well for estimating small eigenvalues and their 
associated eigenvectors; and the cross-validation procedure 
used to estimate the SMT model order can be implemented 
with a modest increase in computation. 
 

2. SYSTEM DESIGN MODEL 

2.1 Covariance estimation for high dimensional vectors 

In the general case, we observe a set of n vectors, y1; y2; ; y 
n , where each vector, y i , is p dimensional. Without loss of 
generality, we assume y i has zero mean. We can represent 
this data as the following p n matrix 
  𝑌 = [𝑌1;  𝑌2; ;   𝑌𝑛 ]:                   (1) 
If the vectors Y1 are identically distributed, then the sample 
   𝑆 = 𝑛 𝑌 𝑌𝑡;                 (2) 
And Sis an unbiased estimate of the true covariance matrix1 

𝑅 = 𝐸 𝑦1𝑦1𝑡 = 𝐸[𝑆] 
While S is an unbiased estimate of R it is also singular when 
n < p. This is a serious deciency since as the dimension p 
grows, the number of vectors needed to estimate R also 
grows. In  practical applications, n may be much smaller 
than p which means that most of the eigen values of R are 
erroneously estimated as zero. 
 
A variety of methods have been proposed to regularize the 
estimate of R so that it is not singular. Shrinkage estimators 
are a widely used class of estimators which regularize the 
covariance matrix by shrinking it toward some target 
structures [4, 5, 6, 7, 8]. Shrinkage estimators generally have 
the form, where is some positive de  nite matrix.  Some 
popular choice for 

R =      D  +  (1)S D 
D are the identity matrix (or its scaled version) [5, 8, 6] and 
the diagonal entries of S, i.e. diag(S) [5, 8]. In both cases, the 
shrinkage intensity can be estimated using cross-validation 
or boot-strap methods. 
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Recently, number methods have been proposed for 
regularizing the estimate by making either the covariance 
or its inverse sparse [9, 10, 14]. For example, the graphical 
lasso method enforces sparsity by imposing an L1 norm 
constraint on the inverse covariance [14]. Banding or 
thresholding can also be used to obtain sparse estimates of 
the covariance. 
 
 
 
2.2 Maximum likelihood covariance estimation 
 
Our approach will be to computer a constrained maximum 
likelihood(ML)estimate of the covariance R, under the 
modeling assumption that Eigen vectors of R may be 
represented as a sparse matrix transform(SMT). So we first 
decompose R as 

𝑅 = 𝐸 𝐸𝑡; 
Where E is the orthonormal matrix of eigenvectors and     is 
the diagonal matrix of eigenvalues. 
Then we will estimate the covariance by maximizing the 
likelihood of the data Y subject to the constraint that E is an 
SMT. By varying the order, K , of the SMT, we may then 
reduce or increase the regularizing constraint on the 
covariance.  
 

2.3 ML estimation of eigenvectors using SMT model 
 

The ML estimate of E can be improved if the feasible set of 
eigenvector transforms, , can be constrained to a subset of 
all possible orthonormal transforms. By constraining, we 
effectively regularize the ML estimate by imposing a 
model. However, as with any model-based approach, the 
key is to select a feasible set, , which is as small as possible 
while still accurately modeling the behavior of the data. 
Our approach is to select to be the set of all orthonormal 
transforms that can be represented as an SMT of order K 
[11]. More specifically, a matrix E is an SMT of order K if it 
can be written as a product of K sparse orthonormal 
matrices. 
 
Figure 1 shows the flow diagram for the application of an 
SMT to a data vector y. Notice that each2D rotation, Ek, 
plays a role analogous to a .butterfly. used in a traditional 
fast Fourier transform(FFT) [16]. However, unlike an FFT, 

the organization of the butterflies in an SMT is 
unstructured, and each butterfly can have an arbitrary 
rotation angle k. This more general structure allows anSMT 
to implement a larger set of orthonormal transformations. 
In fact, the SMT can be used torepresent any orthonormal 
wavelet transform because orthonormal wavelets can be 
factorized into aproduct of Givens rotations and delays 
[17]. 

 

 

Figure 1: (a) 8-point FFT. (b) The SMT implementation, The SMT can 
be viewed as a generalization of FFT and orthonormal wavelets. 

The model order, K, can be determined by a simple cross-
validation procedure. After portioning the data into three 
subsets, K is chosen to maximize the average likelihood of 
the left-out subsets given the estimated covariance using 
the other two subsets. Once K is determined, the proposed 
covariance estimator is re-computed using all the data and 
the estimated model order. 
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The SMT covariance estimator obtained as above has some 
interesting properties. First, it is positive definite even for 
the limited sample size n < p. Also, it is permutation 
invariant, that is, the covariance estimator does not depend 
on the ordering of the data. Finally, the eigen 
decomposition Ety can be computed very efficiently by 
applying the K sparse rotations in sequence. 

 

 

3. SIMULATION RESULTS 

The effectiveness of the SMT covariance estimation 
procedure depends on how well the SMT model can 
capture the behavior of real data vectors. Therefore in this 
section, we compare the effectiveness of the SMT 
covariance estimator to commonly used shrinkage and 
graphical lasso estimators. We do this comparison using 
hyper-spectral remotely sensed data as our high 
dimensional data vectors. The hyper-spectral data we use is 
available with the recently published book [13]. Figure 2(a) 
shows a simulated color IR view of an airborne hyper-
spectral data flight line over the Washington DC Mall. The 
sensor system measured the pixel response in 191 effective 
bands in the 0.4 to 2.4 m region of the visible and infrared 
spectrum. The data set contains 1208 scan lines with 307 
pixels in each scan line. The image was made using bands 
60, 27 and 17 for the red, green and blue colors, 
respectively. 

The data set also provides ground truth pixels for five 
classes designated as grass, water, roof, street, and tree. In 
Figure 2, the ground-truth pixels of the grass class are 
outlined with a white rectangle.  For each class, we 
computed the “true” covariance by using all the ground 
truth pixels to calculate the sample covariance. The 
covariance is computed by rst subtracting the sample mean 
vector for each class, and then computing the sample 
covariance for the zero mean vectors. The number of pixels 
for the ground-truth classes of grass, water, roof, street, and 
tree are 1928, 1224, 3579, 416, and 388, respectively.  In each 
case, the number of ground truth pixels was much larger 
than  191, so the true covariance matrices are nonsingular, 
and accurately represent the covariance of the hyper-
spectral data for that class. Figure 2(b) shows the spectrum 

of the grass pixels, and Fig. 2(c) shows multivariate 
Gaussian vectors that were generated using the measured 
sample covariance for the grass class. 
 
Gaussian case: First, we compare how different estimators 
perform when the data vectors are samples from an ideal 
multivariate Gaussian distribution. To do this, we first 
generated zero mean multivariate vectors with the true 
covariance for each of the   five classes.  Next we estimated 
the covariance using the four methods, SMT covariance 
estimation and the three shrinkage methods. In order to 
determine the effect of sample size, we also performed each 
experiment for a sample size of n = 80, 40, and 20. Every 
experiment was repeated 10 times. 
 

 
Figure 2: Kullback-Leibler distance from true distribution versus sample 
size for various classes: Gaussian case. 

 
In order to get an aggregate assessment of the effectiveness 
of SMT covariance estimation, we com-pared the estimated 
covariance for each method to the true covariance using the 
Kull back-Leibler (KL) distance [15].  The KL distance is a 
measure of the error between the estimated and true 
distribution. Figure 2 show plots of the KL distances as a 
function of sample size for the four estimators. The error 
bars indicate the standard deviation of the KL distance due 
to random variation in the sample statistics. Notice that the 
SMT shrinkage (SMT-S) estimator is consistently the best of 
the four. 
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Figure 3:  (a) simulated color IR view of an airborne hyper-spectral 
data over the Washington DCMall [13].  (b) Ground-truth pixel 
spectrum of grass that are outlined with the white rectangles ina). (c) 
Synthesized data spectrum using the Gaussian distribution. 

 
Figure 4(a) shows the estimated eigenvalues for the grass 
class with n  =  80. Notice that the eigenvalues of the SMT 
and SMT-S estimators are much closer to the true values 
than the shrinkage or glasso methods. Notice that the SMT 
estimator generates good estimates for the small 
eigenvalues.This is because the SMT transform is a sparse 
operator. In this case, the SMT uses an average of K = 495 
rotations, which is equal to K=p = 495=191 = 2:59 rotations 
(or equivalently multiplies) per spectral sample. 

 
 

 
Figure 4: The distribution of estimated eigenvalues for the grass class 
with n = 80. (a) Gaussian case (b) Non-Gaussian case. 

 
Non-Gaussian case: In practice, the sample vectors may not 
be from an ideal multivariate Gaussian distribution. In 
order to see the effect of the non-Gaussian statistics on the 
accuracy of the covariance estimate,we performed a set of 
experiments which used random samples from the ground 
truth pixels asinput. Since these samples are from the actual 
measured data, their distribution is not precisely Gaussian. 
Using these samples, we computed the covariance 
estimates for the five classes using thefour different 
methods with sample sizes of n  =  80, 40, and 20.Plots of 
the KL distances for the non-Gaussian grass case2are shown 
in Figure 2; and Figure 4(b) shows the estimated 
eigenvalues for grass with n = 80. Note that the results are 
similarto those found for the ideal Guassian case. 
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Figure 5: Kullback-Leibler distance from true distribution versus sample 
size for various classes: non-Gaussian case 
 

4. CONCLUSION  

We have proposed a novel method for covariance 
estimation of high dimensional data.  The new method is 
based on constrained maximum likelihood (ML) estimation 
in which the eigenvector transformation is constrained to 
be the composition of K Givens rotations. This model seems 
to capture the essential behavior of the data with a 
relatively small number of parameters.  The constraint set is 
a K dimensional manifold in the space of orthonormal 
transforms, but since it is not a linear space; the resulting 
ML estimation optimization problem does not yield a 
closed form global optimum. However, we show that a 
recursive local optimization procedure is simple, intuitive, 
and yields good results. We also demonstrate that the 
proposed SMT covariance estimation method substantially 
reduces the error in the covariance estimate as compared to 
current state-of-the-art estimates for a standard hyper-
spectral data set. 
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